OPT-GAN: A Broad-Spectrum Global Optimizer for Black-Box Problems by Learning Distribution

نویسندگان

چکیده

Black-box optimization (BBO) algorithms are concerned with finding the best solutions for problems missing analytical details. Most classical methods such based on strong and fixed a priori assumptions, as Gaussianity. However, complex real-world problems, especially when global optimum is desired, could be very far from assumptions because of their diversities, causing unexpected obstacles. In this study, we propose generative adversarial net-based broad-spectrum optimizer (OPT-GAN) which estimates distribution gradually, strategies to balance exploration-exploitation trade-off. It has potential better adapt regularity structure diversified landscapes than other prior, e.g., Gaussian assumption or separability. Experiments diverse BBO benchmarks high dimensional real world applications exhibit that OPT-GAN outperforms traditional neural algorithms. The code Appendix available at https://github.com/NBICLAB/OPT-GAN

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deterministic approaches for solving practical black-box global optimization problems

In many important design problems, some decisions should be made by finding the global optimum of a multiextremal objective function subject to a set of constrains. Frequently, especially in engineering applications, the functions involved in optimization process are black-box with unknown analytical representations and hard to evaluate. Such computationally challenging decision-making problems...

متن کامل

Learning to Learn for Global Optimization of Black Box Functions

We learn recurrent neural network optimizers trained on simple synthetic functions by gradient descent. We show that these learned optimizers exhibit a remarkable degree of transfer in that they can be used to efficiently optimize a broad range of derivative-free black-box functions, including Gaussian process bandits, simple control objectives, global optimization benchmarks and hyper-paramete...

متن کامل

Learning in a Black Box ∗

Many interactive environments can be represented as games, but they are so large and complex that individual players are mostly in the dark about others’ actions and the payoff structure. This paper analyzes learning behavior in such ‘black box’ environments, where players’ only source of information is their own history of actions taken and payoffs received. The context of our analysis are dec...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

From Black-Box Learning Objects to Glass-Box Learning Objects

In the field of e-learning, a popular solution to make teaching material reusable is to represent it as learning object (LO). However, building better adaptive educational software also takes an explicit model of the learner’s cognitive process related to LOs. This paper presents a three layers model that explicitly connect the description of learners’ cognitive processes to LOs. The first laye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i10.26468